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1. Introduction 

The standard model of the early Universe predicts that free electrons and protons 

combined to form hydrogen atoms at a redshift of order 1000. After this “recombination” 

epoch, almost all matter is predicted to be in the form of neutral hydrogen. The Gunn- 

Peterson [l] test is a way of examining this prediction. In particular, the absence of a dip 

in the spectra of distant quasars on the blue side of the Lyman alpha line is convincing 

evidence that there is very little neutral hydrogen in the intergalactic medium. To get a 

feel for the conflict between the prediction and the observations, consider the limit imposed 

by Steidel and Sargent [Z] on the intergalactic hydrogen density, no: 

12~ < 8.4 x lo-“h cme3 0.1) 

at a redshift z = 2.64. Here h is the Hubble constant today in units of 100 km set-’ 

Mpc-’ and lies between .4 and 1. The standard model prediction [3] for the hydrogen 

density at this redshift is roughly 7 x 10m6 cmw3, violating the Steidel-Sargent limit by six 

orders of magnitude. 

It appears then that there is a diffuse spectrum of ionizing radiation permeating the 

Universe [4]. What is the source of this radiation? Some years ago Scisma [5] proposed that 

neutrinos may be both the dark matter and the source of ionizing radiation. Neutrinos are 

particularly attractive candidates to serve this dual role because cosmology predicts that 

there are many background neutrinos; they exist in numbers comparable to the background 

photons. If the mass of one of the species of neutrinos is in the range 25 - 100 eV, then 

they can be the dark matter [6]. Further, if the lifetime for the process 

heavy + %ight + ?’ (W 

is short enough - but longer than the age of the Universe, so most of the heavy neutrinos 

are still around to be the dark matter - then the photons coming from neutrino decays 

can fully ionize the intergalactic medium [7]. 

In this paper, we will analyze the Decaying Dark Matter (DDM) scenario and see what 

predictions it makes. In particular, for any given values of the neutrino mass and lifetime, 

we will calculate the photon spectrum today as a result of all past neutrino decays, and 

we will find the predicted value of the neutral hydrogen density. To do this, in Section 3 

we derive the Boltzmann equations which govern the photon spectrum and the ionization 

ratio. It will be shown that the ionization ratio depends on the electron temperature, so 
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we will derive the Boltzmann equation for this quantity as well. Our Boltzmann treatment 

complements and - to some extent - extends previous work on the subject [S] [9]. 

The possibility of radiatively decaying particles has been raised in many different 

cosmological contexts [lo] [ll] [12]. In all of th ese cases, it is useful to have an expression 

for the photon spectrum as a function of redshift. In Section 4, we solve the Boltzmann 

equation for the photon spectrum in terms of the ionization ratio. Our discussion is kept 

general so it can be applied to different decaying particle scenarios and also to other 

proposed explanations of the Gunn-Peterson tests. 

In section 5, we present the results of a numerical integration of the Boltzmann equa- 

tions. There are two requirements which together bound the neutrino lifetime. The lifetime 

must be short enough so that almost all hydrogen atoms are ionized. If the lifetime is too 

short, though, we would have observed some of the photons from the neutrino decays in 

the diffuse UV background. These complementary bounds constrain the neutrino lifetime 

to be of order 10z3 - 10z4 seconds. Besides the quantitative results, our most striking 

prediction is that the photon spectrum today will be sharply cut off at long wavelengths. 

First, though, for the purpose of orientation, several general comments are presented 

in the next section, 

2. General Considerations 

With very little work, one can get a feel for the range of neutrino masses and lifetimes 

necessary for the DDM scenario to work. First, we note that cosmological neutrinos with 

a mass in the desired range are very non-relativistic today. Therefore, the energy of the 

photon emitted in a decay is E,/2 = my/2 [as long as the emitted neutrino is much less 

massive than the decaying one]. This must be greater than the energy required to ionize 

a hydrogen atom. 5s E 13.6 eV, so the first constraint is on the mass of the decaying 

neutrino: 

m, > 27.2 eV. (2.1) 

A second constraint emerges when we note that if the energy density of neutrinos is 

enough to set P/Pcritical z Q = 1, then there is a relationship between the Hubble constant 

and the neutrino mass. This follows since 

fiZ,hZ = mv 
91.5 ev (2.2) 
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If we now require R, + Obaryon = 1, then we can express h as a function of m,: 

h(my) = [ ,l;ve, + .0125] I’* 

Here - and throughout - we have set R aaryonh2 = .0125, the favored value emerging 

from cosmic nucleosynthesis calculations [3]. We note that since m, must be greater than 

2~s = 27.2 eV for the emitted photons to be able to ionize hydrogen, h must be greater 

than 0.55. Since we are assuming a matter-dominated Universe with R = 1, h must be 

less than 0.65 in order for the age of the Universe to be greater than 10”’ years [13]. This 

places an upper bound on m,: 

m, < 37.5 eV. (2.4) 

A final constraint comes from requiring that all the hydrogen atoms in the intergalac- 

tic medium have been ionized. If every photon produced ionizes a hydrogen atom, then - if 

decaying neutrinos are to be solely responsible for the ionization - the number of neutrinos 

which have decayed by now must be greater than the number of hydrogen atoms. But the 

number density of neutrinos that have decayed by now is just (ts/r)nJtc), where to is 

the present age of the Universe; r is the neutrino lifetime; and n”(ts) is the cosmological 

number density of one species of neutrinos, roughly a third the number density of back- 

ground photons. As a first estimate, let us assume that the number density of hydrogen 

[ionized or not] in the intergalactic medium is of order the diffuse baryon number density, 

4 x 10-l’ times the number density of background photons. By requiring the number 

density of decayed neutrinos to be greater than the hydrogen number density, we arrive at 

the third constraint, this one on the neutrino lifetime: 

to < 7 < lost0 (2.5) 

where the lower limit follows from the requirement that most of the heavy neutrinos have 

not yet decayed. We will see in the next few sections that the lower limit is much larger 

than to due to ultraviolet constraints [14] and the upper limit is much smaller than lOgto 

due to the effects of recombination. The favored regime which emerges 10z3 - 10z4 

seconds -- is extremely interesting. The standard model of particle physics predicts [15] a 

lifetime much longer than this for a 30 eV neutrino, so convincing evidence of this scenario 

would require drastic modifications of the standard model [16] [17]. 

How good is the assumption that the number density of diffuse hydrogen today is 

of order the cosmological baryon number density’? The answer to this question depends 
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upon how much and when baryons clumped together. One might imagine that all of 

the baryons clumped together (into pop III objects) shortly after recombination. Such a 

scenario would explain ‘the null Gunn-Peterson result but is rather unlikely as a model 

of structure formation. It is more likely that in the era in which quasars formed (the 

epoch the Gunn-Peterson test probes) virtually all the baryonic matter is still diffuse. 

‘Subsequently more clumping, though how much is unknown, took place. In order to allow 

for this uncertainty we shall introduce a clumping factor f such that 

diffuse _ 
RB 

casmological 
= f 12s (2.6) 

where f 5 1. It is fairly safe to assume that for the oldest quasars f is of order unity, 

while today it could be up to three orders of magnitude lower [18]. 

3. Evolution Equations 

In this section we derive the Boltzmann equations which govern the photon spectrum 

and the ionization ratio [19]. In a flat FRW Universe, the distribution function f(lc, t) of 

a particle species 4 evolves [20] according to the following equation: 

{ ; - g”g}f&?t) = qJ(lc,t) 

where R(t) is the scale factor of the Universe. The term on the left hand side is the 

generalized Liouville operator acting upon f+, which takes into account the cosmological 

expansion. The term on the right side, represents all the physical interactions involving 

the particle. For example, for scatterings ?i, + a ++ b + c, the collision term is 

C$(k, t) = -l s d3p, J &b J @pc 
2Edk) , (2n)32Ea(&) (2a)32Eb(pb) (2T)32&(p,) 

x (2T)464(E +Pa - Pb -PC) [Inlr’,+,,,+,~~(k)~~(P.) 

- i”12b+e-~+~~b(pb)fc(pc)!~ 

(3.2) 

Here, and throughout, Ei(q) E /m f or any particle i. The matrix elements squared 

include summations over the spin states of particles o, b and c but not of $. Note that we 

have not included Pauli (Bose) suppression (enhancement) factors, as they are negligible. 
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We shall first consider the distribution function of the photons, f.,(1C,t). The aim of 

this paper is to elucidate the most important physics of the reionization epoch, so accord- 

ingly only the dominant terms will be included on the right hand side of the Boltzmann 

equation. For the photons this includes the decay process 

w(4) -+ a(Ph(k); . (3.3) 

the heavy neutrino decaying into a light neutrino [assumed massless] and a photon. In 

analogy to Eq. (3.2), we have 

C decay = & / ,2;;f2p / i2i)~~~.(q)R(4,t)lM(2(2~)464(q -P - k, (3’4) 

where F,(q, t) is the distribution function of the massive neutrinos and ]MIZ is the square 

of the amplitude for radiative decay, summed over massive and light neutrino spin states. 

The inverse process is unimportant at the temperatures of interest, far below the heavy 

neutrino mass. 

We know that F,(q) constrains 4 to be of order the temperature; since we are interested 

in temperatures much less than m,, we have 

Wd - If- $1 - 4 x ;6(k - my/Z). (3.5) 

Using this simplification and the fact that 

t) = “v(t) (3.6) 

where n”(t) is the number density of the heavy v and v [hence the factor of 21, we find 

c decay = nv$%(k - ko) 
0 

Here ko is the energy of the decay-produced photon, 

ko+‘, (3.8) 

and r, the lifetime of the decaying neutrino, is given by 7 = 16nmV/]M/2. 
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Another important process affecting the photon distribution is photoionization of 

hydrogen - y(k)H(k’) + e(p)P(p’) - and th e inverse process, recombination - e(p)P(p’) + 

y(k)H(k’). These lead to a collision term 

Cian/rec = -& 
J 

3 I 

(27r):ip(p’) (2$&p) s I (2r)3:&(k’) 

x IJW’H 7+ep(2~)~6~(~ +P’ - k - k’) [f-r(k)gdk’) - ~e(~h=++)l 
(3.9) 

where gH(k’), gel gp are the distribution functions of hydrogen atoms, electrons and pro- 

tons, and A4 is the amplitude for the process in which a hydrogen atom in the ground 

state gets ionized. There is no contribution to the photon spectrum due to ionization from 

excited states of hydrogen, since at these low temperatures, all excited states that might 

be produced immediately drop down to the ground state: only the n = 1 state is occupied. 

[Appendix A treats this question quantitatively.] All the integrals in Eq. (3.9) can be 

carried out assuming thermal equilibrium amongst free electrons, protons, and hydrogen 

atoms. Since the rate for elastic scattering - the process which bring the species into 

thermal equilibrium - is much greater than the expansion rate, thermal equilibrium is a 

good assumption. Consider first the term in Eq. (3.9) with fygH. The integrals over p 

and p’ can be rewritten in terms of the cross section for photoionization, and the integral 

over k’ can be rewritten in terms of no yielding, 

Cionization = -nHae,+,p.fy(k,t)O(k - SO). (3.10) 

Now consider the term in Eq. (3.9) with gegp. Due to thermal equilibrium, each of these 

distribution functions are Maxwellian with a common temperature T,: 

312 
,-~=l*m.T. 

312 
,-p’=/2MT. (3.11) 

where M is the proton mass and the factor of 2 in the denominator for ge accounts for the 

two spin states of electrons [nuclear spin states play no role, since those in gp cancel those 

in gH]. Note that the proton distribution function, gp, is proportional to np, which we 

have set equal to n, since there are an equal number of free electrons and protons. [Any 

difference between the two is due to the small fraction of helium atoms, which we neglect.] 

These expressions for the distribution functions together with energy conservation can be 

used to do the integrals in Eq. (3.9). Specifically we write 

g,(p)gp(py = $ (2)“” (?.-)“” c-P-~o+k’21*Wl~ 

= $ (2)“” (~)3’2~-li-lol,T~2g~~‘) ($)“’ (3’12) 

6 



where the first equality follows from energy conservation and the second from the fact that 

SH is also assumed Maxwellian. We can now proceed as before, integrating over p,p’, and 

k’ to find 

c recombination = 

Physically we see that at low temperatures the photons produced in recombination will 

have energies very close to es, as expected. 

While there are other processes which in principle should be included in the Boltzmann 

equation, such as Compton scattering and Bremsstrahlung [21] , since the rates of these 

processes are much slower, they can be neglected. Thus the photon equation is 

-l g - gk;}f,(k,tj = nvJ;2Ta6(k - ko) 
0 

31-J 

n~mf-+Pe -[k-eol'T= - nHUff,,,pf,(k,t)@(k - 6,). 

(3.14) 
We must now derive an equation for the neutral hydrogen density. Following the 

principles above, we can write the non-integrated equation as 

t 
1 

J 
d% J d3p’ J d3k 

= !i&(k’) (27r)32&(P) (~T)~~EP(P') (2a)32k 
(2T)464(p + p’ - k - k’) (3.15) 

l~IZ,,,&Je(P)SP(P’) - DflZ ,-,-,,.f-,(Wgn@‘)] 

where we have explicitly distinguished the two amplitudes for reasons to be made clear 

shortly. Summing over hydrogen spin states and integrating over hydrogen momenta we 

find 
ad 

3 
R- $LHR~) = ‘2~2~ J &+(P)(w-H+‘) 

J 
(3.16) 

-2nH *f (k)aH,+,p. (2ny 7 

The recombination cross section cr’e~-~~7 must include capture into all possible states of 

hydrogen, since at low electron temperatures, direct recombination to excited states gives 

an important contribution to the recombination rate. Since the lifetime of excited states 

(even metastables) is much shorter than the time scale of ionization, CHy-eP need only 

include ionization from the ground state. 



To simplify the equation further we define the neutral hydrogen ratio 

where 12~ is the number density of baryons in the intergalactic medium. We are neglecting 

the small fraction of helium atoms, so n, =‘nP = ng(l - r). Plugging in the relevant cross 

sections for ionization and recombination [22] and performing the integrations, we have 

dr 
z = ~B(~v)~(~g/Tc)1’Z(0.43 + 1/2ln$)(l - r)” - fi-,u~r 

e 
(3.18) 

where 

%ar 2 2 J % (k)W,-ep (271.)3 7 

4 J cc $fr(k). (3.19) = by- i+ 60 
Here go = 6.2 x 10-r’ cm’ is the ionization cross section at threshhold, and we have taken 

~~~~~~ to fall off as kd3. The recombination cross section is (bv)~ = 5.2 x lo-r4 cm3 

set-’ . 

Since the recombination rate depends upon the electron temperature, we must derive 

an equation for it. We begin with the Boltzmann equation for the electron distribution 

g,(p, t). There are several relevant interactions which must be included on the right hand 

side of the Boltzmann equation. First, there are elastic processes: Coulomb scattering 

with other free electron; Coulomb scattering with free protons; and elastic scattering off 

hydrogen atoms. We also must include a term representing recombination and its inverse, 

photoionization. Finally, a free electron can scatter off the background photons and lose 

energy, so we must include a term for Compton scattering. Thus the equation for the 

electron distribution function is 

+ Ciortjrec + CCompton~ (3.20) 

We now outline a simple recipe for dealing with the elastic collision terms. (i) Multiply 

this equation by the kinetic energy p2/2m, and integrate over phase space: number of 

spin states ~d~p/(2n)~. (ii) Do the same for all particles with which the electron interacts 

elastically. (iii) Add all these equations. Then the integrals over the elastic terms all vanish 
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due to energy conservation. As an example, consider electron -proton elastic scattering. 

The sum of these - after the relevant multiplications and integrations is - 

~(~‘:2m~ELtic + J ~!Pf2!2”)CeLtic 

(3.21) 

x (2n)4 b4(P + P’ - p - q’) c lM12 
spina 

x [P2/2~e + P’“/2MlMdg&‘) - dphb’)l. 

But, by energy conservation, the last line here is 

(q2/2me + d2/2MMddd) - (~~/2m, + p’2/2M)ge(p)gp(p’). (3.22) 

This changes sign under the interchange of dummy variables (q CI q’;p c p’) while the 

integration measure is invariant under such a change. Therefore the sum in Eq. (3.21) 

vanishes. 

The above prescription throws away some of the information contained in the non- 

integrated equation. However, we can compensate for this by assuming that the distribu- 

tions are Maxwellian. Then the integrated equation determines the one parameter in the 

Maxwellian distribution: the temperature Z’,. Specifically, it is straightforward to show 

that the left hand side of the sum of the integrated Boltzmann equations is 

(3.23) 

We can write the densities in terms of r and ne and then use the fact that no@ is constant 

to rewrite this as 

3 
-naR--- 
2 

d”, {R2Te(2 - r)} = ;%(2 - T) (3.24) 

If the right hand side of the Boltsmann equation were zero that is, in the absence of 

any interactions - and if ? were 0 then we find that T, falls as Rd2, a well-known result. 

Another good check on Eq. (3.24) is to ignore expansion and interactions. Then as the 

neutral hydrogen fraction increases (1: > 0), Z’, increases as well. This reflects t,he fact that 

the temperature is shared by the 3 species: electrons, protons, and hydrogen atoms. If one 
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hydrogen atom is added, both an electron and a proton must be subtracted, so the total 

number of degrees of freedom has dropped by one. This leads to a rise in temperature. 

It remains to find the right hand side of the Boltzmanri equation; that is, to integrate 

the remaining collision terms in Eq. (3.20) and its proton and hydrogen counterparts. 

First consider the recombination/ionization terms. Schematically they sum to 

c lM12 LfdkMk’) -$&Mp’)l KpZ/2me) + (p’2/‘W - (k’2/2W1. (3.25) 
momenta, spins 

By energy conservation, the energies in square brackets are just equal to !z - es. Thus, 

when integrating over f+,gH, the p and p’ integrals can be done easily. When integrating 

over gegp, we can simply set the energies equal to the electron kinetic energy, since the 

heavy atom gains very little kinetic energy in the process. Therefore, the k and k’ integrals 

in this case are easily performed. The final integral over the electron momentum is just 

the thermally averaged cross section multiplied by the temperature. So these two terms 

give: 

2nH J 
=.f (k)(k- 
(2~13 y 

eo I( OH-,-&-) - n,npT,(crv)R(Eo/T,)l’*(0.43+ 1/21n $). (3.26) 
e 

Finally the Compton term in Eq. (3.20) must be integrated. Note that Compton scattering 

off the background photons is not important for protons [and obviously not for neutral hy- 

drogen] since the cross section is small than for electrons by a factor of (me/M)‘. Therefore 

we need only integrate over C&,pton of electrons. The result is well- known [23] 

3 

2 ($3 J 
--+/2rne)CCompton = 3ne(;T- Te) 

e 
(3.27) 

where T is the temperature of the background radiation and ~~ is the Compton cooling 

time 

r, z 3% 
‘&-,~Thompson 

= T,o(Tg/T)” (3.28) 

where the Compton cooling time today (when T = To) is 7,” = 7.1 x 1019 sec. We can 

collect equations (3.24),(3.26), and (3.27) to write the evolution equation for the electron 

t,emperature as 

+e + $Te - &Te 
I J 

= 2r &&(k)(k - ~~~~~~~~~ 

+ i(l - ,r)i 
I 

’ FzT (T/To)~ - (1 - r)“~z~(~~~)~(~o/T,)“~(0.43 + 1/21n $)T,. 

e(3.29) 

10 



4. Photon Spectrum 

The set of equations - (3.18), (3.29), and (3.14)- can be numerically integrated to 

find the photon spectrum and the ionization fraction at all times. We will display results 

of this numerical work in the next section. Here we focus on the equation for the photon 

spectrum - Eq. (3.14). For a variety of reasons it is useful to have an analytic expression 

for the occupation number, f-,(y, z), We first derive such an expression and then apply it 

to three problems that arise when dealing with a non-equilibrium distribution of photons 

in the early Universe: (i) What is the remnant spectrum of photons today? (ii) How many 

ionizing photons are present at a given redshift z? and (iii) Why and when is recombination 

to the ground state of hydrogen suppressed? This last point - initially made by Peebles 

- will be shown to emerge in a straightforward manner from the analytic expression for 

It is useful first to rewrite the photon equation in terms of dimensionless variables. 

Let 

y=L 
ko (4.1) 

where the last equality follows from our assumption that the Universe is flat and matter 

dominated. By way of orientation in these new variables, we note that all photons are 

produced with energy k = ko and lose energy due to the redshift, so we are interested only 

in y < 1. The main redshifts z of interest are determined by the neutrino lifetime; roughly, 

we will be studying the epoch z < 300. Using the facts that (i) the Universe is matter 

dominated and therefore 4 = Hs(1 f z) 3/2 (Hc is the Hubble constant today) and (ii) the 

baryon and neutrino number densities increase as (1 + z)~, the photon equation becomes 

( -(1+ *j; - Y$ + X(es/ko)s dz)(l + 43;3eC~ - dko) > fr(y, z) 

ng(to)(l - r)2e-OCoy-fo)~TeO[y - eo/kO] 

where 
x _ ndtobr 

Ho 

(4.2) 

(4.3) 

The first term on the right in Eq. (4.2) is the source term due to decays and the second 

the source term due to recombination, The effect of the ionization sink term is governed 
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by the dimensionless number X, which is essentially the ratio of the ionization rate to the 

Hubble rate. We can get a feel for the magnitude of X by taking no = 2 x 10-r crne3 

- the favored value from cosmic nucleosynthesis. Then the ionization rate today [if all 

baryons were in the form of neutral hydrogen] is ng(ts)ul = 3 x lo-r4 set-‘. This is much 

larger than the expansion rate today, so X is a very large number. 

’ For the time being we will call the right hand side of Eq. (4.2) S’(y,z) so that the 

final form of the solution may be used for any sources of interest. We note, though, that S 

typically has [at least] two pieces: the source of ionizing photons - in this case the decaying 

neutrinos - and the photons produced in the process of recombination. To solve this partial 

differential equation, we first turn it into an ordinary differential equation by introducing 

a new variable 

pE--lny=-In e 1 1 c (4.4) 

The variable p runs along a curve in the (y,z) plane; different curves are labelled by 

different values of se. Along any one curve, 

d 
- = -(1+ s)$ -y& 
dP 

(4.5) 

so that in terms of p, Eq. (4.2) becomes 

y + X(eo/k,,)3 
r [(l + .~,)e-~l [(l + z&~I~‘~ 0 (6 - eolko) f 

3 Y 
CP) 

(4.6) 
= S [ebP, (1 + zc)eTp] 

To be explicit, the right hand side here means: take S(y, Z) and evaluate it with y set equal 

to e-” and 1 + .Z set equal to (1 + z,)e-P. For a given z,, the solution to this ordinary 

differential equation is elementary: 

f-SF) = ip dp’S [e-“, (1 + ..)e-P’] 

x exp - 
{J 

P dp,,X(co/ko)3~r [(I f z,jd’] [(I + z&-P”I~‘~ 0 (P” - co/ko) 

P’ 
e-3p” 

(4.7) 

Here we have dropped the boundary term, f,(p = 0), since there are no photons with 

momentum greater than ks, i.e. with p negative. This solution in terms of p can be 

converted back into a solution fY(y, Z) by eliminating p [via p = -lny] and 2, [via 1 + 
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t, = (1 + 2)/y]. It is also convenient to introduce new dummy variables: y’ c e-p’ and 

1 + z’ = (1 + z,)e-P” = Fe-p”. These steps lead to 

fr(Y,r) = A’ $hYf. (1 + z)$ 

x MP { - ~(~ol~o13 ($)‘ ~~~~:“~;;l+,),, (1 +$, r(Z)). (4.8) 
0 

We can go no further without an explicit form for the source terms, but we note that X 

is a very large number - of order 103 - so f-,(y, .z) is negligible unless other factors in the 

argument of the exponential are very small. That is, ionization - as represented here by 

the argument of the exponential - plays an important role in suppressing the number of 

photons coming from any source. 

In our case there are two source terms; we focus first on the dominant one: the photons 

coming from decaying neutrinos. The contribution to f+,(y, .s) from this term is 

P(Y?Z) =l’ 5 [ ytoyps(yJ - I)((1 + *)y’,y)3’z] 

x exP { - ~(Q/~O13 (+>, J,i:~[~~:::,,),, (1+y)5,*44} 0 
= ~~~~~~~~(1+*)3'"o(l-y) 

(4 g) 

x exp { : Xfo/ko13 ($)’ /(:~~~~,,,+,,,, (1 +d:~15~2 d~‘l} 
0 

where the superscript on f, refers to the fact that this is the contribution from the first 

source term. Eq. (4.9) tells us that the photon spectrum at a given energy y and epoch t 

depends on an integration over the amount of neutral hydrogen at redshifts larger than t. 

This is reasonable: In the absence of ionization, high energy photons red-shift down and 

add to the number of low energy photons at later epochs. If these high energy photons 

are lost through ionization, the low energy number at later epochs is correspondingly 

suppressed. The integral over r(z) quantifies this suppression. In short, if we are given 

r(z) we can do the integral and determine the photon spectrum. In practice things are 

not so simple: r(z) depends on f,. Nonetheless, we will see that in several important 

cases, one can make good approximations which considerably simplify the way in which 

f, depends on r. 
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We can use Eq. (4.9) to estimate the photon spectrum today when t = 0. Since 

z = 0, the integral in the argument of the exponential in Eq. (4.9) ranges from t’ = 0 to 

1 + Z’ = l/y = ko/k. As a first approximation to the effect of ionization, let us assume 

that the Universe is spontaneously ionized at z = zi; i.e. r = 0 for all z < Zi. Then the 

argument of the exponential vanishes as long as 1 + zi > ko/k. For energies k less than 

ko/(l + Zi), the argument of the exponential is huge an&f, 2: 0. We can write for the 

photon intensity today 

I= k&z k 2 d3k &(k,r = 0) 
(2~)~ dk dR 

3’2 
(4.10) 

@(ko - k)@(k - ks/(l + zi)). 

The first part of this expression is the standard formula for the intensity due to a radiatively 

decaying relic particle [lo]. Only the last step function - reflecting the ionization process 

- is new. Of course the drop in intensity at ko/(l + zi) is not as dramatic as the step 

function indicates; in the next section we will show numerical results. 

Another question of interest is : At a given redshift z, how many ionizing photons are 

present due to the decaying neutrinos ? To find this, we must calculate ii,, as defined in 

Eq. (3.19), 

fly’(z) = n,(to) 
3t& 1 + 2)3/Z 

2rk,3 

One simple approximation which is often useful is to neglect completely the effect of 

ionization on f-,; this corresponds to setting the exponential in Eq. (4.11) to 1 so that 

+‘(z) * fitnized = nv(to);(l + z)~” (eO/ko)3 [ (kO,t,,)3’2 - 1-j (4.12) 

where the superscript, reminds us that this approximation should be valid only in an ionized 

Universe. For if there are very few neutral hydrogen atoms, then the ionization process has 

a negligible effect, on the photon distribution. Note that as k. approaches ~0, the number 

of ionizing photons goes to zero: expansion causes the decay-produced photons to lose 

energy, pushing them below threshold. 
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The opposite situation occurs when there are many neutral atoms so that a photon 

produced in a neutrino decay immediately ionizes a neutral atom. This corresponds to 

a large damping factor in the exponential of Eq. (4.9). In such a situation there is no 

time for a photon to lose energy via the red-shift before it is absorbed in an ionization 

process. Therefore, there are almost no photons with energy much less than ko. We can 

take advantage of this fact by expanding the argument of the exponential around y = 1. 

This leads to 

Vr,/ko)‘li-,,/k,l 

$?‘(*) = n”(to) 
3ts( 1 + ty 

2Xr J 
0 11 - A(e:;k,)a]s’2 

--v r(z)(l +2)3/Z [l - ~X(rs~k0)3 - J( dlnr 
2 dln(l + 2)) X(e,,yk,,)3 

+ 0($/X2)] 

3) 
where the dummy variable v E X(eo/ko)3(1 - y). The upper limit of this integral is quite 

large, effectively co. It is clear that as long as r(t)(l + z)~/~ is of order 1, the dominant 

contribution comes from v x 1. Hence the terms of order v/X do not contribute in this 

pre-ionization regime. Only when r(z) b ecomes very small (= 0(X-‘(1 + z)-~/~)) do the 

higher order terms in the argument of the exponential become significant. Hence as long 

as r(z) is not too small, 

%(to)to 3(1 + *y* 
dy(z) E 7 2x --T(z)v(l+t)s/2}. (4.14) 

0 
The remaining integral is trivial so that the un-ionized approximation is 

my) ~ Euyn-ionized = n,(to)to 3 
T 2x r-(z). 

(4.15) 

Until now we have focused on the source term for photons coming from decaying neu- 

trinos. Now let us consider the source term due to the process ep -+ Hy. The contribution 

of this process to the photon occupation number can be obtained by inserting the last term 

on the right hand side of Eq. (4.2) t m o our general expression for f., (Eq. (4.8)): 

f$?y, 2) = l’ 5 exp { - 4eolko)3 (%)’ f(:~f~~:~~+z,,,, (1 cdI::)5,2 dz’) 

*Oy x An&to) (g2 ( ;~;(~f~;~;;1)3’Z 

x (1 - r[(l + *)y’/y])2 exp key’ - co - 
TeK1 + Z)Y’/Yl > 

O(y’ - Eo/ko). 

(4.16) 
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This term can be shown to be much smaller than jq’. However, it does have one important 

implication for the recombination process. Consider the contribution of this term to cyr 

the number density of ionizing photons. We show in Appendix B that, if the electron 

temperature is small, 

g,?’ = n&z) 
(1 - 7.)’ 0.8(CW)R 1 

I- UI If 
(4.17) 

This contribution to ii, must be included in the evolution equation for r (Eq. (3.18)), the 

right hand side of which is 

“g(~“)R(EO/Te)1’2(0.43 + 1/2ln %)(I - r)2 - ?%pIr 

= ng(av)fl(e0/T~)~‘~(0.43 + 1/21n $ - 
0.8 

0 )(I- r)2 - +& (4.18) 
e l + X(l+z&T, 

The new term - coming from iiy’ - reduces the recombination rate. In fact, if X(1 + 

2) 3/2rTe/~a is very large, the factor of 0.8 exactly subtracts out recombination to the 

ground state. The fact that recombination to the ground state is strongly suppressed 

was first noted by Peebles [24] in the context of the standard cosmological scenario and 

recently emphasized by Asselin etal. [9] in the context of decaying particle scenarios. 

The reason for the suppression is straightforward: Any recombination to the ground state 

produces an ionizing photon. If the ionization time is very short compared to the Hubble 

time - i.e. if X(1 + z)~/~TT,/Eo is very large - then this photon will quickly ionize another 

neutral atom. Thus the total ionization fraction remains unchanged. Only when r becomes 

very small does the ionization time become larger than the expansion time; at that point 

recombination to the ground state also becomes relevant. 

5. Numerical Results 

In this section, we present numericalsolutions to the coupled equations -(3.18), (3.29), 

and (4.8). For definiteness, we will first present results and discuss the details of a 30 eV 

neutrino with a lifetime of 10z4 seconds. The qualiatative behavior is independent of the 

exact neutrino parameters in the parameter space of interest ( 27.2 eV < m, < 37.5 eV 

and 10z2 set < r < 10z6 set), though, obviously, the exact quantitative results will differ. 

First, we shall consider the evolution of the ionization state of the Universe. In Figure 

1 we have plotted the neutral hydrogen fraction, T, versus 1 + Z. The most striking feature 
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of this plot is the precipitous drop in r - four orders of magnitude - while z changes by one 

or two. This suggests t,hat reionization was spontaneous at a zi of about 17. If we plot the 

complementary quantity, 1 - T, a different picture emerges. In Figure 2 We have plotted 

the free electron ratio, 1 - T; versus redshift. The salient characteristic of this plot is the 

gradual change in 1 - r until total ionization, Is the ionization spontaneous or not? That 

depends upon what question is being asked. If one’ is interested in how often CBR photons 

scatter off free electrons, then the important scale is the scattering rate of the photons 
. 

which 1s proportional to neOThOmpsO,,, where n, = (1 - r)n~. The opacity - roughly the 

scattering rate divided by the Hubble rate - changes gradually, as suggested by Fig. 2. 

This is the issue analyzed and the conclusion reached by Scott, Rees, and Sciama [25]. 

On the other hand, we are interested in how reionization affects the spectrum of decay 

photons. The relevant scale is noon, where no = rng. The relevant plot is Fig. 1 in 

which it is seen that the opacity changes very rapidly for these photons. 

The scale which characterizes the ionization rate is f&or. In Figure 3 we have plotted 

the ratio of ionizing photons to baryons as a function of redshift. The two solid lines 

correspond to the two sources of ionizing photons: decaying neutrinos (Eq. (4.11)) and 

recombinations (Eq. (4.17)). This plot corroborates the claim made in the last section 

that the recombination source is always less important than the decaying particle source, 

and thus its contribution to the photon spectrum is negligible. The importance of this 

term lies in the correction it provides to the recombination rate. In the pre-ionization 

regime, when the ratio of these photons to neutral atoms is much smaller than unity, every 

recombination photon immediately reionizes a neutral atom. Thus direct recombination to 

the ground state is suppressed. However, in the post-ionization regime direct recombination 

to the ground state is unsuppressed. It is reassuring that in our formalism this comes out 

naturally. 

The shape of the recombination photon density curve provides insight about the var- 

ious mechanisms driving recombination. Early on, when the Universe is nearly neutral, 

there is very little recombination, and hence W, (2) is very small. As the Universe becomes 

reionized recombinations become more common, so there is a rise in n7 (‘J) Eventually, due 

to the Hubble expansion, the free electron-proton density turns around again, and the 

number of recombination photons correspondingly drops. The rise in n, at z - z; corre- (2) 

spends to the physical fact that recombination [to all levels] is an important process at this 

epoch. As an example of this. we can estimate what pi would have been in the absence of 

recombination. Then, once the number of photons produced by neutrinos was equal to the 
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number of baryons, the Universe would be ionized. That is, a simple estimate would give 

n,tijT = ng, or *i = ((3/11)ts/77r)2’3. With the parameters under consideration, this 

estimates zi N 45. The fact that si is actually closer to 20 illustrates that recombination 

delays the onset of full ionization[26]. 

We have also included in this figure the two approximations to n, -(I) discussed in the 

last section. The dashed curve corresponds to Eq.(4,15),‘and the dotted curve to Eq. 

(4.12). It is evident from these plots that each approximation is extremely good in a 

particular epoch. The first approximation is virtually exact up until .z z zi. The reason 

this approximation is so good in the un-ionized regime is straightforward. Let’s rewrite 

Eq. (4.15) in the more transparent notation, 

“(1) e 
% 

Wt,lT 

nfr(t)ar 

This says that the number of photons is approximately equal to the rate of neutrino 

decay divided by the rate of ionization. When the ratio of photons to neutral atoms 

is so small that every photon will immediately ionize a neutral atom then the Hubble 

expansion is unimportant, and the approximate equality is virtually exact. With our 

sample parameters it turns out that even at z = sir there are about 160 neutral atoms for 

each decay photon, so it is not suprising that the approximation is so good up until this 

point. It is only when the number of neutral atoms per photon is of order unity and less, 

i.e. for z < tit that approximation (5.1) breaks down. We see here that this is an extremely 

good approximation until r falls below 10w4. If one is interested in calculating the density 

of free electrons then this approximation is sufficient. However, if one is interested in a 

calculation of the neutral atom fraction for z < *i, then this approximation breaks down 

too soon. 

The post-ionization approximation, Eq. (4.12), b ecomes accurate a few redshifts 

after the unionized approximation becomes invalid. Recall from the discussion in the last 

section that this approximation neglects ionization totally. In Fig. 1, we see, however, that 

r continues to drop even in the post-ionization regime. The residual fraction of neutral 

atoms is not strictly frozen, but rather continues to get smaller, so there still is some 

ionization happening. Since the ratio of the ionization rate to the Hubble rate decreases 

at lower redshifts, this approximation becomes virtually exact. Nonetheless, there is a 

regime, albeit a fairly small one, in which neither approximation obtains, so numerical 

integration of the photon spectrum, eq (3.19), is critical. 
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The DDM scenario predicts a diffuse spectrum today. Armed with the ionization 

history of the Universe in the reionization epoch, we are able to calculate it, by numerically 

integrating Eq. (4.9) with z = 0. Others who have considered the DDIMscenario [lo] have 

ignored this effect. 

In Fig. 4 we have plotted t,he correct DDM spectrum (solid line). For comparison’s 

sake we have also plotted the uncorrected spectrum, i.e. the one which ignores ionization 

effects (dashed line). The two spectra are identical for photon energies greater than a 

few eV. At a low photon energy (for our sample parameters at about k = .9 eV ), the 

DDM flux drops quite abruptly to zero. This is readily understood in light of previous 

discussions. At .z x zi there is a precipitous drop in opacity. Photons today with energies 

k<k 1+2i would have been emitted while the Universe was still opaque, i.e. when z > zi. 

Essentially every photon produced in this pre-ionization regime is used up in the process 

of reionization. Photons today with energy k > & were produced in a transparent 

Universe, so accordingly travel freely. In the last section this was approximated as a 

step function at k = ks/(l + 2;). Th e numerical result verifies that this is a reasonable 

approximation. 

Fig. 4 also shows several sets of data points. The two in the low energy regime 

[27] are representative of upper limits in the cosmic flux: no detection has been made. 

Any predicted cosmic flux must be lower than this. It is seen that the upper limit is far 

above the predicted levels even in the absence of ionization. Therefore, while data in this 

regime may ultimately be used to detect the radiation emitted by unstable neutrinos and 

in particular the characteristic drop in intensity due to ionization by early photons, the 

present upper limit is several orders of magnitude away from this goal. 

The second set of data points in Fig. 4 lie between 6 - 10 eV [28]. They purport to be 

actual measurements of a cosmic background flux with all local contaminants subtracted 

off. These measurements are much closer to the spectrum produced in the DDM scenario 

for two reasons: first, the observed magnitude is an order of magnitude or so lower than 

the upper limit at 3 eV and, second, the predicted flux is larger here, since it grows as 

k3/‘. Therefore, this regime is most likely to be of use in detecting photons from unstable 

neutrinos. The only unfortunate aspect of this is that the sharp drop in intensity due to 

ionization occurs at lower energies than this most favorable regime. 

Since the predicted spectrum is a function of (mvr r), the observed points can be 

turned into constraints on the neutrino mass and lifetime. We will see shortly that this set 
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of constraints complements the constraints coming from the Gunn-Peterson test to allow 

only a small window in parameter space. 

For completeness we include a plot of electron temperature versus redshift (Figure 5). 

It is seen that the temperature does not change very drastically. In fact the temperature 

remains low enough 30 that collisional ionization can be justifiably neglected. We also note 

that the thermal evolution is insensitive to the initial temperature. Compton scattering 

insures that the electron temperature tracks the photon temperature until the decays set 

in. 

The second prediction of the DDM scenario is that there is a relic abundance of neutral 

hydrogen. When Sciama and others [5] first considered the DDM hypothesis in light of 

Gunn-Peterson, they required simply that total reionization occur by z = 4.7 since this is 

the epoch of the earliest test [29]. As discussed earlier, the approximations they made do 

not allow a precise calculation of the neutral atom abundance for .z < zi. By computing r 

all the way to z = 0, we can simply calculate 

“H(Z) = f(Z)nB(Z) = r(z)fW(tO)(l + tj3 (5.2) 

where j is the clumping factor defined in Eq. (2.6). This is plotted in Fig. 6 for j = 1. 

The importance of this prediction is that the neutral hydrogen density can be probed 

observationally via the Gunn-Peterson test. In figure 6 we have also plotted the upper 

limits on the neutral hydrogen density coming from three different Gunn-Peterson tests at 

z = 4.7,4.1 and 2.64 [29][30] [Z]. 

The major uncertainty in our calculation of the neutral hydrogen abundance stems 

from the uncertainty in clumping. Throughout we have assumed a homogeneous and 

isotropic Universe, but clearly once quasars, whose observation allows one to deduce the 

neutral hydrogen density in the IGM, are formed (and possibly earlier) the Universe is no 

longer homogeneous. While the data point at 1 + z = 5.7 appears to impose the least 

stringent requirement, we have included it since at higher redshifts it, is safer to assume 

that j is of order unity. 

Finally, we are in a position to summarize the constraints on the mass and lifetime 

of the dark matter particle in the DDM scenario. In Figure 7, we have collected the 

constraints coming from the Gunn-Peterson tests(with j = 1) and from the UV flux data. 

We have presented the constraints coming from two G-P tests [29][30]. The dashed line 

corresponds to the constraint coming from the z = 4.1 quasar. This appears to impose the 
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strictest constraint, leaving only region A in parameter space. In particular the smallest 

allowed mass is 28.5 eV with a 2 x 10z3 sec. lifetime. The dotted line, corresponding to 

the z = 4.7 Gunn-Peterson constraint, allows region B in parameter space, as well. This 

does not rule out, for example, a 27.7 eV dark matter particle (Sciama’s preferred value 

[7] ), provided the lifetime is larger than 2.5 x 10z3 seconds. We have included this less 

stringent constraint because it is the one in which our approximations - homogeneity and 

no other sources heating the electrons - are most likely to be valid. 

One feature of this plot should be explicitly noted. That is the fact that as m, 

approaches 27.2 eV the upper limit on the lifetime drops steeply. It turns out that in order 

to satisfy the Gunn-Peterson tests, it is necessary that some ionization take place in the 

ionized regime. As discussed in section 4, the number of ionizing photons in the ionized 

regime goes to 0 as kc approaches es. The only way to compensate for this reduction 

in ionizing photon number is to lower the lifetime. Consequently, in order to satisfy the 

Gunn-Peterson tests, for masses close to 27.2 eV, the lifetime of the decaying particle must 

be short. 

More realistic accounting of clumping and electron heating may well modify some of 

these quantitative conclusions. We note, though, that the three sets of observations-of the 

Hubble parameter; diffuse photon spectrum; and neutral hydrogen density - complement 

each other. Measurement of the Hubble parameter (or the age of the Universe) seems to 

require the neutrino mass to be leas than 37.5eV. Measurement of the diffuse photon 

spectrum constrains the neutrino lifetime to be greater than lo* seconds. The Gunn- 

Peterson tests complement these two by providing an upper limit on the neutrino lifetime 

and a lozuer Iimit on the neutrino mass. 

6. Conclusion 

We have quantitatively analyzed a scenariio of reionizing the Universe. The numerical 

results allow accurate comparison between theory and observation. In particular, we are 

able to derive strict constraints on the parameters of the decaying neutirno scenario - i.e. 

on the neutrino mass and lifetime by requiring the Universe to be ionized enough to 

satisfy the Gunn-Peterson tests and by limiting the ultraviolet radiation produced to be 

under the observational limits. 

Several aspects of this work may be of use in other reionization scenarios and in more 

general work on the early Universe. 
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(i) We have derived an expression, Eq. (4.8), for the photon spectrum due to a general 

source in the presence of a background of neutral hydrogen atoms. 

(ii) A qualitative feature of the photon spectrum in such a situation is a sharp drop in the 

spectrum today. Photons with energies lower than this cut-oof would have been produced 

before the Universe was ionized. Hence, they were immediately absorbed in the ionization 

process and are no longer present today. . 

(iii) The number of neutral hydrogen atoms drops dramatically at the time of ionization. 

This is completely consistent with the point made by several groups that the number of 

free ions rises gradually. In our language r changes rapidly while 1 - T changes very slowly. 
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Appendix A. Ionization From Excited States 

Here we justify our claim that direct ionization of excited hydrogen atoms can be 

neglected. It is useful to first review the standard recombination scenario as described by 

Peebles [24]. Recombination occurs when there are essentially no thermal photons available 

to ionize ground state neutral atoms. In fact the only photons around with energy greater 

than a Rydberg come from recombination to the ground state. These photons immediately 

reionize the atoms, effectively cancelling every recombination to the ground state, such that 

neither recombination or ionization involving ground state atoms needs to be included in 

the ionization equation. The important physical processes are direct recombination to 

excited states, ionization of excited atoms, radiative transitions between atomic levels and 

the Hubble expansion. Peebles derived the following equation to describe the ionization 

ratio, 

dr 
-= 
dt 

(y,,,,ls(l - r)” - /3,,,rn,,,c-(10.2 e”P) c 
nrr 1 (A.1) 
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where C is a time-dependent factor (defined explicitly in [24]) which incorporates the 

effects of the physical processes mentioned above; Q erc is the excited state recombination 

coefficient, of order (uu)~(es/T~); p,,, is the rate of ionization of excited atoms’; and neZc 

is the number density of hydrogen atoms in excited states. The ionization rate is well- 

approximated by ns.401 where ~~3.4 is the number of photons with energy greater than 3.4 

eV. The upshot is that even though the the fractional population of excited states is small, 

since there is an exact cancellation between ionization and recombination of ground state 

atoms, the relevant physics concerns the excited states. 

In the reionization epoch, .z < 300. all of these physical processes are still taking place, 

so the two terms in (A.l) in principle should be included in the ionization ratio equation. 

(We note that through out this epoch, the multiplicative factor, C, is equal to unity.) 

However, in this epoch there is a source of photons energetic enough to ionize ground state 
-(I) atoms - decays. Thus to Eq. (A.l) we need to add the ionization term, -ny U&s/nB, 

where ngr is the number density of hydrogen atoms in the ground state. 

Now let us focus on the ionization terms. Because of the exponential suppression, the 

ionization term of (A.l) -i.e. the second term on the right hand side -is clearly negligible. 

We need to examine the new term, $1 u~ns~/ng and determine whether ionization of 

excited atoms by decay photons needs to be included. We will be justified in neglecting 

these ionizations if the per volume rate of ionization of excited atoms is much smaller than 

the per volume rate of ionization of ground state atoms, 

P erenerc 
“(1) 

= fl3.4hze 
<< 1. (-4.2) 

n-f umgs ii$l 9” 
-Cl) In the opaque era, .z > pi, it is easy to estimate Eq. (A.2). First of all, 123.4 N R+, 

since the photons immediately ionize and do not get redshifted. Secondly, because there 

are virtually no resonant decay photons, the fraction of excited atoms is given by the 

expression derived by Peebles, 

where li E (eo-::)3H a.nd A = 8.227sec-’ is the decay rate of the 2s state. The ratio 

in Ey. (,A.3) is negligibly small, always less than lo-is, so the condition (-4.2) is easily 

satisfied. For .Z < zi, when photons travel freely through the universe and get redshifted, 

then ~~3.4 is larger than ,$’ by up to two orders of magnitude. However, even though there 

are some resonant photons around to pump atoms from the ground state to the excited 

states. adding another term to Eq. (A.3), the fractional population of excited states is still 

negligibly small, so criterion (A.2) is again satisfied. 
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Appendix B. Recombination Photons 

In this appendix we calculate the number density of ionizing photons coming from 

recombination. This is 

fi$?(z) = $ lIk, p)(y,*) 

= ( 2”‘; z13)3’2 hnB~~O)Q lIko : [ $ 

(1+dY’/Y &’ 
exp --X(ss/k~)~( +)’ J (1 + =‘)5/2 ‘(“) 

(B.1) 
1+z 

0 

y’ 
312 (1 - r u + zIY/d)2 key’ - co 

Y @ [(1 + z)y,,y]) - Teal + Z)Y’lYl ’ > 

where we have inserted jy’ from Eq. (4.16). The exponential e-(koY’--r~)/T= is very small 

except when y’ is very close to co/k 0. But y’ 2 y 2 co/ko, soy must also be close to co/k0 

and, of course, close to y’ as well. We can therefore expand y’ about y and expect the 

leading terms to give the largest contributions. Consider, for example, the integral in the 

argument of the first exponential: 

I (l+r)Y'lY &' 

1+2 
(1 + z,)3,2 dz') = (lryz;3y2y(Yj - Y) 

[ 
1+ WY - Y) 1 P.2) 

Since y’ - y N T,/es, the higher order terms may be dropped. Keeping only the leading 

terms amouonts to setting y’ = y everywhere in the integrand of Eq. (B.l) except in the 

exponentials, where only the linear terms in y’ - y need be retained. Therefore, 

x exp 
X(eo/ko)3(1 + z)~& 

- 
Y4 

(y’ - v) - “o$- Co } 
e 03.3) 

= (24e;43)3’2 wtokj(l - 42 17,, dy ~ ;;:y~)[;_; 3,2 

2-e Y= 

Neglecting terms of order Z’,/EO, the y- integral can be performed by setting y = EO/~O 

(except in the exponential), leading to 

,+(Z) N [Q(tO)(l + z,“] (’ irj2 [ Tf($j;;2] [l + 
Co A( 1 + z)%T, ] -’ 

63.4) 
e 
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The first factor in square brackets is just ng(z) since the baryon number density scales as 

(l+~)~. The second factor in square brackets is the ratio of the ground st,ate recombination 

cross section to the ionization cross section: (OZI)O/OI. The ground state recombination 

cross section, though, is g(sc)(au)n where g is the gaunt factor, roughly 0.8 at threshhold. 

We therefore recapture Eq. (4.17). 
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Figure Captions 

1. The neutral hydrogen ratio as a function of redshift in a universe with a decaying 

neutrino of mass 30 eV and lifetime 10z4 sec. 

2. The free electron ratio as a function of redshift in a universe with a decaying 

neutrino of mass 30 eV and lifetime 10z4 sec. 

3. The density of ionizing photons as a function of redshift. The solid lines are exact 

solutions: ii?’ (decay photons) is labelled (1) and F$’ (recombination photons) is labelled 

(2). The dashed line corresponds to the unionized approximation, Eq. (4.15), and the 

dotted line to the ionized approximation, Eq. (4.12). 

4. The predicted photon spectrum due to a decaying neutrino with mass 30 eV and 

lifetime 10z4 sec. The solid line is the correct predicted spectrum. The dashed line ignores 

corrections due to ionization effects. The arrows mark upper limits and the crosses mark 

observations, discussed in the text. 

5. The electron temperature as a function of redshift in a universe with a decaying 

neutrino of mass 30 eV and lifetime 10z4 sec. 

6. The predicted amount of neutral hydrogen as a function of redshift in the DDM 

scenario with a neutrino mass 30 eV and lifetime 10z4 sec. The clumping factor, f, has 

been set equal to 1. The data points are upper limits: any prediction must be below these 

levels. 

7. The allowed values of m, and T when the clumping factor f is set to 1. The solid 

line represents the constraint coming from observations of the diffuse UV background. The 

dashed line represents the constraint coming from the z = 4.1 Gunn-Peterson test, and 

the dotted line from the 4.7 Gunn-Peterson test. Region A satisfies all three constraints. 

Region B appears to be ruled out by the t = 4.1 test, though it satisfies the z = 4.7 and 

the UV constarints. 
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